青草成人在线免费视频-视频一区二区自产在线-91国内偷拍精品视频-人妻内射一区二区在线

河北大學、南開大學團隊創(chuàng)高帶隙PSCs效率突破20.80%

發(fā)表時間:2024/11/4 17:21:05

研究成就與亮點

l   本研究利用雙層自組裝單分子層(Double-layer self-assembled monolayer, D-2P)結構,成功調(diào)節(jié)了寬帶隙鈣鈦礦薄膜中鹵素元素的相分布,使其趨于均勻。

l   借助D-2P結構誘導的自下而上模板化結晶,有效抑制了非輻射復合,進而降低了開路電壓(Open-circuit voltage, Voc)損耗。

l   基于此技術,制備的寬帶隙鈣鈦礦太陽能電池(Perovskite Solar Cells, PSCs)實現(xiàn)了20.80%的功率轉換效率(經(jīng)第三方認證為20.70%),創(chuàng)下了帶隙超過1.74 eV的寬帶隙鈣鈦礦太陽能電池的高效率記錄。


研究團隊

本研究由河北大學何庭偉、楊少鵬教授和南開大學袁明鑒教授團隊共同在國際頂級期刊Nature Communications發(fā)表題為《Efficient wide-bandgap perovskite photovoltaics with homogeneous halogen-phase distribution》的研究論文。


研究背景

寬帶隙鈣鈦礦太陽能電池(PSCs)作為串聯(lián)太陽能電池的頂層電池,具有突破單結光伏器件理論極限的潛力。然而,隨著溴含量的增加,寬帶隙PSCs的開路電壓(Voc)損失問題日益嚴重。這一現(xiàn)象限制了寬帶隙PSCs的性能提升,也阻礙了高效鈣鈦礦串聯(lián)太陽能電池的進一步發(fā)展。
在寬帶隙PSCs中,混合鹵素鈣鈦礦材料(例如FA0.8Cs0.15MA0.05Pb(I0.7Br0.3)3)是常用的光吸收層材料。

然而,由于溴基鈣鈦礦和碘基鈣鈦礦溶解度差異,在薄膜結晶過程中容易發(fā)生相分離,導致薄膜中鹵素元素分布不均勻。一般來說,溴基鈣鈦礦溶解度較低,在薄膜制備過程中會優(yōu)先結晶,形成富溴相;而碘基鈣鈦礦則在富溴相之后結晶,形成富碘相。


解決方案

為了解決寬帶隙鈣鈦礦薄膜中鹵素相分離的問題,本研究提出在空穴傳輸層和鈣鈦礦層之間構建雙層自組裝單分子層(D-2P)結構。這種結構基于[2-(9H-咔唑-9-)乙基]膦酸(2P)分子,并利用其自組裝特性和分子間相互作用來調(diào)控鈣鈦礦薄膜的結晶過程。


D-2P 結構的設計理念基于以下幾個方面:

1.          π-π 堆積(π-π stacking):

2P分子頭部的咔唑基團之間可以形成強烈的π-π堆積作用,進而形成穩(wěn)定的雙層結構。密度泛函理論(DFT)計算模擬了2P分子對在三種堆積模型(平行堆積、交叉堆積和反平行堆積)中的結合能,結果表明,交叉堆積模式具有最大的結合能(10.847 eV),因此是穩(wěn)定的D-2P結構形式。

2.          錨定作用(Anchoring effect):

2P分子尾部的磷酸基團可以分別與NiOx薄膜和[PbX6]4-八面體錨定,形成穩(wěn)定的鍵橋結構。

3.          成核位點(Nucleation sites):

磷酸基團可以通過-P-OH···X鍵與[PbX6]4-八面體相互作用,降低溴相和碘相鈣鈦礦的形成能,從而為鈣鈦礦結晶提供成核位點。

通過D-2P結構的引入,可以誘導鈣鈦礦薄膜從底部向上進行模板化結晶,而不是傳統(tǒng)的從頂部向下結晶。這種結晶方式可以有效抑制鹵素相分離,實現(xiàn)鹵素元素在薄膜中的均勻分布。

1.png

2.png

1d & 2f: 分別展示了S-2P處理和D-2P處理的鈣鈦礦薄膜的結晶動力學示意圖??梢郧宄乜吹?,S-2P處理的薄膜是從頂部向下結晶,而D-2P處理的薄膜則是從底部向上進行模板化結晶。

3.png

1h: 展示了D-2P結構在三種堆積模型中的DFT計算模擬結果。

4.png

2e: 展示了有和沒有2P分子時FAPbI3FAPbBr3的形成能。


實驗過程與步驟

本研究中,研究人員首先通過溶液法在ITO基板上制備了NiOx薄膜。接著,通過旋涂法將2P分子的乙醇溶液沉積在NiOx層上,經(jīng)過退火和乙醇清洗,形成單層S-2P結構。為了構建D-2P結構,研究人員在S-2P層上再次旋涂2P分子的無水乙醇溶液,并再次進行乙醇清洗。

D-2P結構制備完成后,研究人員通過旋涂法將FA0.8Cs0.15MA0.05Pb(I0.7Br0.3)3鈣鈦礦前驅(qū)體溶液沉積在D-2P層上,并利用氯苯作為反溶劑,最后進行退火處理,得到完整的鈣鈦礦薄膜。

5.png

1.          步驟 I (S-2P 結構形成):
2P 分子的乙醇溶液旋涂在 NiOx 層上,形成單層 S-2P 結構。此時,部分 2P 分子會無序地附著在 S-2P 表面。此步驟得到的薄膜接觸角為 35.1°。

2.          步驟 II (去除殘留 2P 分子):
使用無水乙醇沖洗 S-2P 薄膜,去除表面上未定向附著的 2P 分子。由于苯環(huán)基團暴露在表面,薄膜的疏水性增加,接觸角增大至 61.9°。

3.          步驟 III (D-2P 結構形成):

再次旋涂 2P 分子的無水乙醇溶液,使新的 2P 分子與 S-2P 表面的 2P 分子通過 π-π 相互作用形成 D-2P 結構。

4.          步驟 IV (再次沖洗):
再次使用無水乙醇沖洗薄膜,去除未結合的 2P 分子。由于 π-π 堆積使親水的磷酸基團暴露在表面,薄膜的親水性增加,接觸角減小至 22.2°


研究成果表征

本研究采用多種表征手段來分析D-2P結構對寬帶隙鈣鈦礦薄膜和太陽能電池性能的影響。

1.          電學性能表征:

l   太陽能電池效率(Power Conversion Efficiency, PCE):

D-2P處理的寬帶隙鈣鈦礦太陽能電池(PSCs)獲得了20.80%的最高PCE,并經(jīng)第三方機構SIMIT認證為20.70% (4a & 4b)。

6.png

SIMIT 認證的 D-2P 處理的 PSC J-V 曲線,證結果與研究人員的測試結果基本一致,證明了 D-2P 處理的 PSC 具有較高的 PCE,其結果可靠性高。

7.png

l   開路電壓(Open-circuit Voltage, Voc):

D-2P處理的PSCsVoc達到1.32 V,相較于S-2P處理的PSCs(1.25 V)有顯著提升,證明D-2P結構有效降低了Voc損耗(4a)

8.png

D-2P 處理的 PSCs VocFF PCE 方面均優(yōu)于 S-2P 處理的 PSCs,表明 D-2P 結構能有效提升器件性能。

l   短路電流密度(Short-circuit Current Density, Jsc):

9.png

文獻中使用光焱科技Enlitech SS-F5太陽光模擬器進行的具體表征結果包括:

研究人員使用SS-F5測試了不同器件結構的J-V特性曲線,并獲得了器件的關鍵性能參數(shù)

10.png

通過電化學工作站測量電化學阻抗譜(Electrochemical Impedance Spectroscopy, EIS),光源使用氙燈太陽光模擬器(光焱科技Enlitech),并通過濾光片調(diào)節(jié)光強。

阻抗譜使用Agilent E4980A精密LCR儀記錄,頻率范圍為0.2 kHz2000 kHz。在暗態(tài)條件下,器件施加等于Voc的偏壓,用于測量傳輸電阻(Rct)和復合電阻(Rrec)

J-V曲線測得的短路電流密度(Jsc)18.81 mA/cm2,與外部量子效率(External Quantum Efficiency, EQE)光譜測量結果一致(4a & 補充圖27)EQE光譜測量使用光焱科技EnlitechQE系統(tǒng)進行(QE-R),顯示D-2P處理的PSC在不同波長下的光電轉換效率。

11.png

12.png

D-2P 處理的器件在整個可見光范圍內(nèi)都表現(xiàn)出比 S-2P 處理的器件更高的 EQE,尤其是在 400-550 nm 波長范圍內(nèi),D-2P 處理的器件的 EQE 明顯提升。這表明 D-2P 結構可以更有效地將光子轉換為電子,從而產(chǎn)生更高的光電流。

13.png

4i:展示了 4-T 全鈣鈦礦串聯(lián)太陽能電池中,頂部半透明 WBG PSC 和底部 NBG PSC EQE 光譜。

從圖中可以看出,頂部 WBG PSC 主要吸收 300-700 nm 波長范圍內(nèi)的光子,而底部 NBG PSC 主要吸收 700-1100 nm 波長范圍內(nèi)的光子。

4-T 串聯(lián)結構中,兩個子電池的 EQE 光譜呈現(xiàn)互補關系,可以更有效地利用太陽光譜中的光子,從而提升整體器件的效率。

14.png

15.png

D-2P處理的PSCs表現(xiàn)出可忽略的滯回現(xiàn)象,并具有穩(wěn)定的最大功率點輸出(補充圖28 & 29)

2.          Voc與光照強度關系:

16.png

D-2P處理的PSCs的理想因子(Ideality Factor, n)1.21,接近于1,表明Shockley-Read-Hall復合得到有效抑制(4d)。

3.          電容-電壓(C-V)特性:

17.png

D-2P處理的PSCs的內(nèi)建電位(Built-in Potential, Vbi)1.01 V增加到1.16 V,表明載流子提取和分離的驅(qū)動力增強,有助于提高Voc(4e)

18.png

19.png

值得注意的是,文獻中提到了電致發(fā)光外量子效率(Electroluminescence External Quantum Efficiency, EQEEL)測量,并指出D-2P處理的器件的EQEEL(0.437%)S-2P處理的器件(0.034%)高一個數(shù)量級(4f)。這表明D-2P處理有效地減少了Voc損耗,與1.32 VVoc提升相符。

4.          光學表征:

l   穩(wěn)態(tài)光致發(fā)光(Steady-state Photoluminescence, PL)光譜:

20.png

ITO/NiOx/D-2P/鈣鈦礦薄膜的PL強度低于ITO/NiOx/S-2P/鈣鈦礦薄膜,表明D-2P結構促進了空穴從鈣鈦礦層到空穴傳輸層的快速提取,從而導致PL猝滅(3g)。

l   時間分辨光致發(fā)光(Time-Resolved Photoluminescence, TRPL)光譜:

21.png

D-2P處理的薄膜的熒光壽命顯著降低,與穩(wěn)態(tài)PL結果一致(補充圖23)。

補充圖 23 中的 TRPL 光譜也印證了圖 3h 3i 的結果,D-2P 處理的薄膜的熒光衰減速度明顯快于 S-2P 處理的薄膜,進一步支持了 D-2P 處理的薄膜具有更高的載流子提取效率

22.png

l   共聚焦PL壽命成像(Confocal PL Lifetime Imaging):

23.png

3h 3i 分別是 ITO/NiOx/S-2P/Perovskite ITO/NiOx/D-2P/Perovskite 薄膜的共聚焦 PL 壽命成像圖。從圖中可以明顯看出,D-2P 處理的薄膜的熒光壽命明顯低于 S-2P 處理的薄膜,差距接近一個數(shù)量級。

D-2P 處理的薄膜具有更高載流子提取效率的原因:

1.          D-2P 結構誘導了均勻的鹵素相分布: D-2P 結構可以引導鈣鈦礦薄膜從底部向上均勻結晶,形成均勻的鹵素相分布。

2.          均勻的鹵素相分布有利于載流子傳輸:均勻的相分布可以減少缺陷和載流子復合,提高載流子遷移率,進而提高載流子提取效率

5.          穩(wěn)定性表征:

·         殘余晶格應變(Residual Lattice Strain):
24.png

D-2P處理的鈣鈦礦薄膜的殘余晶格應變(10.0 MPa)S-2P處理的薄膜(59.8 MPa)低,這歸因于D-2P結構誘導的均勻鹵素相分布(5a, 5b & 5c)。

·         鹵素離子遷移活化能(Activation Energy of Halide Ion Migration, Ea):
D-2P處理的鈣鈦礦薄膜的Ea(0.58 eV)S-2P處理的薄膜(0.17 eV)高,表明D-2P結構有助于抑制鹵素離子的遷移,從而提高薄膜的穩(wěn)定性(5d)

·         電場穩(wěn)定性(Electric Field Stability):
在高偏壓下,S-2P處理的PSCs的電致發(fā)光(EL)光譜出現(xiàn)明顯的相分離現(xiàn)象,而D-2P處理的PSCs則表現(xiàn)出穩(wěn)定的EL信號,表明D-2P結構提高了鈣鈦礦薄膜的電場穩(wěn)定性(5e & 5f)

·         光穩(wěn)定性(Photo-stability):
25.png26.png

在長時間光照下,S-2P處理的鈣鈦礦薄膜的PL光譜出現(xiàn)峰分裂和藍移現(xiàn)象,而D-2P處理的薄膜則保持穩(wěn)定的PL強度,表明D-2P結構提高了鈣鈦礦薄膜的光穩(wěn)定性(5g & 5h)。


·         長期穩(wěn)定性(Long-term Stability):
27.png

在氮氣環(huán)境下連續(xù)光照2500小時后,未封裝的D-2P處理的PSCs仍能保持超過90%的初始PCE,而S-2P處理的器件在1000小時后效率衰減至初始值的一半以下,證明D-2P結構顯著提高了器件的長期穩(wěn)定性(5i)。

6.          其他表征:

文獻中提到了熱導納譜(Thermal Admittance Spectroscopy, TAS)測量用于分析缺陷態(tài)密度(trap Density of States, tDOS),以及掠入射X射線衍射(Grazing-Incidence X-ray Diffraction, GIXRD)用于表征薄膜的殘余應變。這些表征方法可以提供關于薄膜質(zhì)量和穩(wěn)定性的重要信息。


研究成果

本研究通過構建D-2P結構,成功解決了寬帶隙鈣鈦礦薄膜中鹵素相分離的問題。D-2P結構誘導了自下而上的模板化結晶,實現(xiàn)了鹵素元素在薄膜中的均勻分布。這種均勻的鹵素相分布抑制了非輻射復合,降低了Voc損耗,最終使寬帶隙鈣鈦礦太陽能電池(PSCs)的效率達到20.80%(經(jīng)第三方認證為20.70%),創(chuàng)下了帶隙超過1.74 eV的寬帶隙鈣鈦礦太陽能電池的高效率記錄。

為了展示D-2P結構的應用潛力,研究人員制備了半透明寬帶隙PSCs,并將其與窄帶隙鈣鈦礦底電池組裝成四端(4-Terminal, 4-T)全鈣鈦礦疊層太陽能電池(4g & 4h)。結果表明,半透明寬帶隙PSCsPCE達到19.35%,Voc達到1.30 V,而4-T全鈣鈦礦疊層太陽能電池的PCE達到28.08%(4i & 補充表7),展現(xiàn)了D-2P結構在高效疊層太陽能電池中的應用前景。


28.png

29.png

30.png




文獻參考自Nature Communications_DOI: 10.1038/s41467-024-53344-9

本文章為Enlitech光焱科技改寫 用于科研學術分享 如有任何侵權  請來信告知



版權所有©2024 光焱科技股份有限公司 All Rights Reserved    備案號:滬ICP備2021022654號-3    sitemap.xml    管理登陸    技術支持:化工儀器網(wǎng)    
南昌县| 唐山市| 新兴县| 黑水县| 青田县| 定州市| 屏南县| 临城县| 海林市| 甘德县| 买车| 郯城县| 孙吴县| 高碑店市| 宜黄县| 双流县| 嫩江县| 新化县| 巴林右旗| 普洱| 法库县| 米泉市| 旺苍县| 香港 | 浦县| 建宁县| 漳浦县| 嘉义市| 磐石市| 紫金县| 建湖县| 绵阳市| 新余市| 招远市| 巫山县| 林周县| 巴马| 阳山县| 西平县| 鄯善县| 丰原市|